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Uniaxial Hugoniostat: A method for atomistic simulations of shocked materials
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An new equilibrium molecular-dynamics method~the uniaxial Hugoniostat! is proposed to study the ener-
getics and deformation structures in shocked crystals. This method agrees well with nonequilibrium molecular-
dynamics simulations used to study shock-wave propagation in solids and liquids.
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I. INTRODUCTION

Shock waves and their effects have been studied at
atomistic level by non-equilibrium molecular-dynami
~NEMD! simulations for over two decades@1#. More re-
cently, large-scale NEMD shock-wave simulations ha
been performed, some of them including several millions
atoms @2#. These simulations generally include the who
process, from the creation of the shock wave, to its propa
tion in the material until it reaches a steady wave, and ev
tually its emergence at a free surface. In these computat
ally expensive simulations, a significant amount of time
spent in calculating the dynamics of the unshocked mate
in order to achieve the steady state.

Another recent NEMD method@3#, known as the ‘‘ram-
jet’’ or the analytical moving window, focuses the simulatio
upon a region surrounding the wave front by moving t
computational window at the same speed as the shock w
Planes of unshocked crystalline material are introduced
one side while slices of shocked material disappear on
other side. This method has been found to provide accu
information on the shock front structure, especially as
tained from profiles of the thermodynamic quantities ver
distance from the front. If the profiles are steady in the reg
between the shock front and the window boundary, they
provide reliable values of shocked material properties, p
vided the processes involved in the relaxation of the mate
are short on the computational time and distance scales

We propose in this paper an equilibrium molecula
dynamics ~MD! technique for extracting both thermody
namic and structural properties of shocked crystalline so
and fluid, based on the Hugoniot relations for planar, ste
shock waves and their inherently anisotropic nature. T
thermodynamic quantities of a material in the initial u
shocked state and the final shocked state are linked by
so-called Hugoniot conservation relations of mass, mom
tum, and energy across the shock front:

mass: r0us5r~us2up!

⇒e512r0 /r512V/V05up /us ,
~1!
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momentum: Pzz5P01r0usup

⇒us5APzz2P0

r0e
,

up5eus , ~2!

energy:E5E01
1

2
~Pzz1P0!~V02V!. ~3!

E is the internal energy per unit mass,Pzz is the normal
component of the pressure tensor in the direction of
shockwave~arbitrarily chosen to be thez-direction!, andV
51/r is the volume per unit mass of the shocked mater
subscript ‘‘0’’ refers to these quantities in the initial un
shocked state.us is the shock velocity in the material pro
duced by a piston moving into it at velocityup . e is the
compressive volumetric strain~compression!.

These relations are often referred to as ‘‘jump con
tions’’ since the initial values ‘‘jump’’ to the final values a
the shock wave passes through the material.~Of course, the
‘‘jump’’ at the steady shock front is not instantaneous, b
instead, takes place over a finite rise-time or spatial sh
thickness. In this paper, we are interested in thefinal state
long after the shock wave has passed through the mate
and not in the actual simulation of the very interesting, b
transient processes in the shock front.! The final states ob-
tained for different shock strengths form the Hugoniot cur
which can be plotted either as a nearly straight line ofus
versusup , or as a nonlinear curve ofPzz versusV. @From the
final long-time average ofPzz, us andup can be computed
from Eqs.~1! and ~2!.#

We make a special point here of emphasizing the inh
ently anisotropic nature of the shock wave. Anisotropy
particularly important for solids, which can sustain nonze
shear stress and also defect structures, making their beh
quite distinct from that of fluids. While we are most inte
ested in the final shocked states, we note that at the sh
front, even in the case of fluids, the normal pressurePzz is
typically greater than the transverse componentsPxx and
Pyy , so that even fluids show transient anisotropic behav
For later reference, the hydrostatic pressure is one-third
trace of the pressure tensor,P5(Pxx1Pyy1Pzz)/3, and we
©2000 The American Physical Society21-1
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define the shear stress in planar shock wave geometry t
half the normal stress difference:

2t5Pzz2
1
2 ~Pxx1Pyy!, ~4!

so that we can write the normal pressure as

Pzz5P1 4
3 t. ~5!

In the case of fluids, the shear stress at the shock fron
relieved by viscous flow in the transverse directions, so t
the final state far behind the shock front is at hydrosta
equilibrium: Pzz5P ~or t50). In the case of solids, how
ever, transverse motion can occur only if there is suffici
shear stress to overcome the inherent energy barrier to
duce defects~e.g., dislocations! or else phase transforma
tions, and thereby, plastic flow~deformation!. In any case—
whether or not there is plastic deformation—the final state
a solid isstill not guaranteed to be hydrostatic, so that th
can, in principle, be a residual~nonzero! shear stress.

Without simulating a shock wave, the states on the Hu
niot curve can be found by using the Hugoniot relations
constraints. By assumption, only thefinal stateis important:
its volume can be fixed at time zero by allowing atoms
vibrate around perfect, unstrained lattice sites~at volumeV0
and temperatureT0 in the cold, unshocked solid!, and then
applying homogeneous compressione, which can be either
uniaxial ~in the z-direction only, as in the shock wave! or
isotropic ~in all three spatial directions!. The final Hugoniot
temperature can be reached by an equilibrium MD meth
using a feedback thermostat to constrain the internal ene
according to the Hugoniot relation given by Eq.~3!. We call
this combination of initial compression and subsequent th
mostatting ‘‘the Hugoniostat.’’

We expect that the choice for Hugoniostat initi
conditions—either uniaxial or isotropic compression—w
give rise to different resultsonly in the case of a solid, bu
not for a fluid. Under isotropic strain in the solid, the tim
average of the normal pressures are all expected to be e
~so thatt50), and we can therefore suppose that an iso
pic initial condition will not relax, so as to produce any r
sulting defect structures, while the uniaxial initial conditio
will. In fact, we expect that the uniaxial Hugoniostat w
produce plastic deformation more closely resembling a sh
wave, by virtue of the anisotropy inherent in both of the
compressive processes. The system sizes required for
two ‘‘flavors’’ of Hugoniostat will therefore also be quit
different: in order for the uniaxial method to give a faithf
rendering of the shockwave defect structures, the comp
tional box will have to be big enough to contain a reasona
sample of the deformation, which will not in general be u
form in distribution. Moreover, depending on the natural
laxation time for the flow processes, it may still not be po
sible to observe the deformation on reasona
computational time scales. The model and the new equat
of motion for the atoms are described below, followed by
study comparing direct NEMD shockwave and Hugonios
equilibrium MD results.
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II. THEORY

We propose new equations of motion, which constrain
system internal energy to lie on the shock Hugoniot cu
~hence, we call this the ‘‘Hugoniostat’’!. The shock strength
is determined by the compressive volumetric strain, or co
pressione. At time zero, we take a configuration ofN atoms
vibrating about unstrained crystal lattice sites~at volumeV0
and low temperatureT0), and then apply an instantaneou
homogeneous compression, either uniaxially or isotropica
bringing the system to a highly strained state at the fi
volumeV.

The dynamical evolution of the system, in either of t
compressional ‘‘flavors’’ of the Hugoniostat~either uniaxial
or isotropic!, is achieved by integral feedback that contro
the internal energy, analogous to the method of thermos
ting initially proposed by Nose´ and modified by Hoover@4#.
In our approach, in addition to the 3N particle coordinatesr i
and momentapi , we introduce a single intensive global d
gree of freedom—the heat-flow ratex ~negative into, or
positive out of the system!—whose equation of motion de
pends on the instantaneous values ofE andPzz:

r i̇5
pi

m
, ~6!

pi̇5Fi2xpi , ~7!

ẋ5n2
E2E02 1

2 ~Pzz1P0!~V02V!

Ne0
. ~8!

Equation~8! above assumes that the final state is in
uniaxially compressed solid phase.@Obviously, for isotropic
compression of the solid or for a fluid, one is free to repla
Pzz by P in this equation, just as in the Hugoniot expressi
Eq. ~3!.# The frequencyn is associated with the heat-flow
rate x: it is an input parameter chosen to optimize the e
ciency of the coupling between the Hugoniostat and the s
tem of atoms. (e0 is the unit of energy for the interactio
potential and should not be confused with the symbol
compression.!

The feedback provided by the heat-flow ratex guarantees
that, at long times, the system reaches a temperature ap
priate to the shocked state on the Hugoniot. This ‘‘Hug
niostat’’ provides a new statistical ensemble where
Hugoniot relation is satisfied in the long-time average. W
emphasize that, like laboratory shockwave experiments,
Hugoniostat simulation gives the velocitiesus andup . But,
in addition, the Hugoniostat calculation readily yields t
shock temperature, which is not easy to measure in exp
ments.

III. METHODOLOGY

Results in this paper are presented for atoms interac
by the well-known Lennard-Jones 6-12 pair potential, us
reduced units of distance to the minimumr 0, bond energy
e0, atomic massm, and timet5r 0Am/e0; the potential is set
to zero for distances beyond 2.23r 0. We have performed
1-2
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FIG. 1. ~a! Time evolution of
the temperature under uniaxia
Hugoniostat ~20% strain!, with
optimal couplingn533; ~b! with
weak coupling n53.3; ~c! with
strong couplingn5100.
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simulations to compute the Hugoniot curve in three differ
ways, using the same initial equilibrated configuratio
namely, an unstrained, zero-pressure, nearly ze
temperature (kT0 /e050.001), face-centered cubic~fcc!
crystal ~the potential cutoff is just before the 5th neighb
shell!.

First, we performed direct NEMD shockwave simulatio
in the solid, with the shockwave propagation along the^001&
crystal direction~i.e., along the z-axis! for typical sample
sizes 303303150 unit cells. To initiate the shock wave, th
sample is given an average initial z-velocity of2up and
thrown into a momentum mirror standing atz50 @2#. Peri-
odic boundary conditions are applied in the x- a
y-directions. One end of the sample is a free interface, w
the other is confined by the momentum mirror. The simu
tion is run until the shock wave reaches the free end of
sample~a time of usually less than 10t0). Classical Newton-
ian equations of motion are integrated by central differenc
with the timestep ranging from 1023 to 231023t0.

Next, in order to compare with the final states produc
by these NEMD shockwave simulations, we performed eq
librium Hugoniostat MD simulations, both isotropic an
uniaxial. In each case, the simulation box is originally a cu
of size 15315315 unit cells, with periodic boundary cond
tions applied in all three directions. An instantaneous co
pression is performed homogeneously, either isotropically
uniaxially along the^001& ~z-direction! at time t50. The
dynamic evolution of the system is then computed accord
to the equations of motion described in the previous sect
typically for times of about 50t0. ~Note that an MD Hugo-
niostat calculation is about 8 times less expensive than
NEMD shockwave.!

In the Hugoniostat MD simulations, the response time
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the system is dictated byn, the frequency~coupling strength!
of the thermostat. In order to get an efficient coupling b
tween the Hugoniostat and the system,n should be chosen to
be close to the natural vibrational frequency of the atom
represented by the Einstein frequencyvE under compression
@5,6#. As the compression goes up, so doesvE , and so
shouldn. To illustrate this, we show in Fig. 1 the differenc
in evolution of the temperature under three coupli
strengths. When the coupling is chosen to mirrorvE at 20%
compression~about twice the value at normal density!, the
temperature comes quickly to its equilibrium value wi
modest, random-looking fluctuations. A value ofn that is too
small gives rise to large, long-lived undulations in the te
perature, while a value ofn that is too large exhibits large
amplitude oscillations that never seem to settle down.

Care has to be taken also with the initial value of t
temperature. When a large strain~either uniaxial or isotropic!
is applied to the system, the initial state can be quite far fr
the final equilibrium state, and the early stages of the sim
lation can exhibit very large fluctuations in the various m
chanical quantities before settling down. In order to prev
unwanted instabilities, the temperature of the system is gi
an initial value obtained from the Hugoniot energy relati
@Eq. ~3!#, where the potential part of the pressurePzz

F and the
potential energyF per unit mass are evaluated at the co
pressed volumeV:

kT(t50) /m52
E01 1

2 Pzz
F~V02V!2F

42V0 /V
. ~9!

When the initial temperature is set according to Eq.~9!,
fluctuations larger in amplitude than those expected at e
1-3
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librium are still observed in the early stages of the simu
tion, but they are considerably smaller than when the ini
temperature is chosen to be too small. The initial values ox

and ẋ are set to zero.

IV. RESULTS

A. Comparison of thermodynamic properties: NEMD
and Hugoniostat

Using the direct NEMD method, shockwave simulatio
for different piston velocities have been performed, fro
small shock strength up to the melting transition. When
shock wave reaches the end of the sample, the therm
namic quantities for the shocked material are averaged
space, excluding a few layers next to the shock front a
next to the momentum mirror. In the case of the uniaxial a
isotropic Hugoniostats, simulations at a variety of compr
sions have been performed. Averaging is done when the
tem has reached a stable state~namely, when the thermody
namic quantities fluctuate around a constant average va!.
Figure 2 shows pressures and temperatures along the H
niot, calculated using the three methods.

In the two Hugoniostat methods, the Hugoniot relation
guaranteed. In general, as we show in the following sect
the uniaxial Hugoniostat produces defect structures v
similar to the direct NEMD shockwave simulations, while n
defects at all appear in the isotropic Hugoniostat simulati
until well after melting has occurred along the shock Hug
niot. The good agreement found between the different Hu

FIG. 2. Pressures and temperatures from simulations: NE
shockwave~diamonds!, uniaxial Hugoniostat~circles!, and isotropic
Hugoniostat~triangles!.
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niot curves then demonstrates that the thermodynamic q
tities are insensitive to the presence of solid-state defect

The Hugoniot relation is obeyed in the NEMD shockwa
simulation provided the shock wave has traveled far eno
to become steady. We note that for the strongest shock
i.e., those that result in melting—the NEMD simulation
have to be run for very long times to ensure steady-w
convergence to the fully melted state. In this regime, both
uniaxial and isotropic Hugoniostat simulations agree w
with each other, and give more reliable results for mu
smaller system sizes than do the NEMD simulations.

The change seen around a pressureP'580 is associated
with the melting of the material. The uniaxial Hugoniost
MD and NEMD shockwave simulations agree very close
with each other, while the isotropic Hugoniostat differs n
ticeably near the melting point. The melting temperature
tained from the isotropic Hugoniostat is indeed found to
greater than the other two, suggesting that the solid is su
heated under isotropic compression. When a crystal is iso
pically compressed, defects are not produced in the struc
so that a significant mechanism for bulk melting in sho
waves is suppressed. The crystal remains perfect up to
melting temperature.

Figure 3 shows a snapshot of the isotropic Hugonios
simulation, just below melting, along with the radial distr
bution function~RDF!. Since the temperature is very hig
the RDF exhibits broad peaks, so that the perfect fcc cha
ter is not at all obvious in the snapshot. Nevertheless, p
fcc crystal is found after annealing this configuration.~The
quench is done by kinetic annealing, where the velocities
all particles are set to zero whenever the total kinetic ene
of the sample has passed through a maximum@7#.!

B. Comparison of structural properties: NEMD
and uniaxial Hugoniostat

Isotropic compression of a perfect fcc crystal does
generate any shear stress whatsoever, and shear stress i
essary to produce extended defects in the solid, such as
of partial dislocations. Thus, an isotropically compress
crystal remains completely free of extended defects unt
melts. ~Under periodic boundary conditions—especially f
small system sizes—melting occurs in MD simulations a
noticeably higher temperature than the value at the ther
dynamic limit.! On the other hand, a shock wave induces

D

d
-

-
r
o

FIG. 3. ~a! Snapshot of an
~x,y! slice of the system at the en
of an isotropic Hugoniostat simu
lation ~36% strain!. ~b! RDF,
compared with that of a zero
temperature fcc crystal. Radii fo
this RDF have been normalized t
the nearest neighbor distancer 1.
1-4
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FIG. 4. ~a! Initial shear stress for fcĉ100& uniaxial compression atT50, as a function of volumetric compression.~b! Time evolution
of the shear stress in a uniaxial Hugoniostat simulation at 16% compression.
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maximum value of the shear stress at the shock front, wh
is subsequently reduced as defects are created.

In comparing NEMD shockwave simulations with th
equilibrium, homogeneous Hugoniostat methods, it is imp
tant to remember that shock waves are spatially inhomo
neous, with a finite thickness. There may be many impor
features, associated both with the gradient across the f
and the transient time-dependence of the wave, that are
fully captured by the uniaxial Hugoniostat~even though it is
anisotropic, like the shock wave!. One important feature
common to both—at least to some degree—is the anisotr
of the momentum distribution at the shock front, whi
could lead to thermal activation of defect creation.

In Fig. 4~a!, we display the initial value of the shear stre
t(t50) in the uniaxial Hugoniostat as a function of uniax
compressione along the^100& direction and at an initial
temperatureT050. Note that there is a special symmet
point ate5121/A250.293, where the initial fcc lattice ha
been turned into bcc@8#.

It has been found that, for fcĉ100& shocks above a criti-
cal shock strength~near 14% strain!, the shear stress is re
lieved by the emission of partial dislocations and the res
ing formation of stacking faults on the four available$111%
slip systems@2#. Similarly, shear stress is produced duri
^100& uniaxial compression of an fcc crystal. For strains
to 14%, the final structure is elastic uniaxially strained f
i.e., body-centered tetragonal~bct!, and no defects are nucle
ated. However, at strains above 14%, the shear stress i
lieved by the formation of defects in both the uniaxial Hug
niostat and NEMD simulations. At these strain
corresponding to moderate shock strengths, shear stres
pears to be the driving force for the creation of extend
defects. The relief of the shear stress can be seen in Fig.~b!
which showst vs. time in an actual uniaxial Hugoniosta
calculation at 16% compression. The shear stress drops
lower value, after defects are produced. This mirrors the
havior in full NEMD shockwave simulations. As we sha
see, deformation continues to occur well beyond the pea
the initial shear-stress curve. Consequently, initial sh
stress is not a completely reliable diagnostic for predict
shock-induced plasticity; the processes are evidently m
complicated.

Figure 5 displays a snapshot at the end of the unia
Hugoniostat simulation at 19% strain and also at the end
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shockwave simulation at the same strain (up52.5). The
snapshots of the plastic deformation resulting from the sh
wave and uniaxial Hugoniostat look similar, indicating th
presence of stacking faults in the crystal under both an
tropic processes. The size of the Hugoniostat sample is
small to get an accurate value of the density of defects p
duced. Nevertheless, the distance between two stac
faults seems to be approximately the same in both cases~the
snapshots in Fig. 5 are for the same cross-sectional a!.
Analysis of the RDF for these two configurations confirm
the nearly isotropic fcc character of the structure. Nevert
less, if these systems are kinetically annealed, very sm
bumps atr 51.62 andr 51.89 can be seen in the normalize
RDF, representative of distances in the hexagonal clo
packed~hcp! crystal, which is characteristic of fcc stackin
faults ~stacking of close-packed$111% planes goes from AB-
CABC . . . to ABABC . . .!. It takes a time of approximately
10t0 for t to be partially relieved via the creation of faults
the uniaxial Hugoniostat simulation. At the end of the sim
lation, t is not zero. The value of the ‘‘residual’’ shear stre
is mildly dependent on system size.

For higher compressions, in the range 15–23 %, stack
faults are the principal defects created, and their density
creases with compression. This same trend is also obse
in shockwave simulations and the density of stacking fau
can be used as a measure of the plastic work@2#.

At even greater compressions~or higher piston veloci-
ties!, new deformation patterns are seen. Figure 6 display
snapshot of a uniaxial Hugoniostat simulation at 26% co

FIG. 5. ~a! Snapshot of an~x,y! slice of the system at the end o
a uniaxial Hugoniostat simulation~19% compression!, after kinetic
annealing.~b! Snapshot after a shock wave initiated withup52.5
~18.5% compression! has propagated through the sample.
1-5
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FIG. 6. ~a! Snapshot of an~x,y! slice at the
end of a uniaxial Hugoniostat simulation~26%
compression!, after kinetic annealing.~b! Snap-
shot after a shock wave (up54.5) has propagated
into the sample.~c! RDFs from top to bottom:
perfect ~zero-temperature! fcc crystal, after pas-
sage of a shock wave~25.7% compression!, after
uniaxial Hugoniostat simulation~26% compres-
sion!, and perfect hcp crystal. Radii for thes
RDFs have been normalized tor 1. ~d! RDF of a
perfect hcp crystal and selected chevron ban
~see text! from a shockwave simulation~25.7%
compression!, after kinetic annealing.
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pression, along with a snapshot of a shockwave simula
(up54.5, or 25.7% compression!. The snapshots show th
presence of similar defects as seen at lower strains, nam
stacking faults, but the overall pattern is different from t
ones seen at weak shock strength. We can see the appea
of ‘‘chevron bands’’ in the y-direction, where the syste
seems to have slipped along only one direction@for example,
Fig. 6~a! exhibits two chevron bands of defects#. These
bands appear sometimes in the x-direction~x- and
y-directions are obviously equivalent at the beginning of
01612
n

ely

nce

e

simulation!. We notice that the distance between two ban
seems to be approximately the same for the shockwave
uniaxial Hugoniostat simulations. The RDFs exhibit the
mally broadened peaks, and comparison with the RDF
perfect hcp or fcc crystals is inconclusive. Kinetic anneali
has been performed on the two systems in order to rap
quench out thermal fluctuations, without changing the str
ture. One of the chevron bands has been extracted from
structure, and the corresponding RDF is displayed in F
6~d!, along with that of a perfect hcp crystal. The agreem
l

ion
FIG. 7. ~a! Snapshot at the end of a uniaxia
Hugoniostat simulation~35% compression!. ~b!
Snapshot at the end of a shockwave simulat
(up510.5). ~c! RDFs for the two simulations:
uniaxial Hugoniostat~dot-dashed line! and shock
wave ~solid line!.
1-6
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between the two is good, and no additional peaks are fou
The resulting hcp structure contains a very high density
defects.

These chevron patterns in the hcp structure, character
of twins, are also observed for compressions in the rang
24–33 % for both shockwave and uniaxial Hugonios
simulations. Shock-induced melting occurs around 3
compression. For compressions between 34% and 36%,
structures emerge, a snapshot of which can be seen in F
The system is still ordered, but does not exhibit the sa
type of chevron patterns as previously described.

The structure of the system, and particularly the prese
of defects, is essential to predict the correct melting beha
of a material under shock compression. In this regard,
uniaxial Hugoniostat is much more faithful to the dire
NEMD shockwave simulation, compared to the isotrop
Hugoniostat. When compared with direct NEMD simul
tions, the uniaxial Hugoniostat is able to not only reprodu
the critical uniaxial strain above which plastic deformation
observed, but also the same structures and density of de
seen in direct shock simulations over a wide range of stra
all the way up to melting.

The similarities between the type of structures obtained
NEMD shock simulations and the uniaxial Hugoniostat n
withstanding, there remain important differences between
two approaches. In Fig. 8, we show the initial shear str
t(t50) for the uniaxial Hugoniostat (T050, short-ranged
Lennard-Jones potential@2#! as a function of compression
Also shown is the maximum shear stress at the middle of
NEMD shock wave. From this figure, we see that the init
shear stress above about 16% reaches a maximum and
falls. If this initial shear stress were all that were important
defect production in the perfect^100& fcc crystal, one might
conclude that no plastic deformation ought to occur
shock waves whose strength is sufficient to produce c
pression above this peak value. Moreover, at the strain w
t(t50)50, one could argue that no deformation of a
kind should occur. It is clear from this figure that the ma
mum shear stress at the shock front is more predictive of
plastic deformation seen in fcc^100& shocks, particularly for
compressions above the perfect-crystal threshold near 1

FIG. 8. Shear stress as a function of compression in the
^100& direction for the short-ranged Lennard-Jones potential (r max

51.547r 0 @2#!. The dashed curve is theinitial , T50 value in the
uniaxial Hugoniostat; the solid circles represent the maximum sh
stress at the shock front in direct NEMD shockwave simulation
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There, the temperatures climb very nonlinearly with stra
so that thermal fluctuations—particularly significant for t
overshoot seen in uniaxial shock waves, and mirrored n
bly in the uniaxial Hugoniostat simulations—cannot be
nored. Moreover, the structures seen in shock waves an
the uniaxial Hugoniostat at high compression depend u
details in the interatomic interaction potential. Belak@10# has
noted a region of compression just before melting that
pears to have no deformation, at least for one kind of int
action potential. Crystal stability and thermal activation
defect production—both dependent upon interact
potential—are just two factors that need to be considere
this region of high shock compression prior to melting.

V. CONCLUSIONS

A new equilibrium MD method—the uniaxia
Hugoniostat—for simulating the final state of shocked cr
tals has been developed and successfully applied to the
of the Lennard-Jones fcĉ001& crystal. This method homo
geneously and uniaxially compresses the crystal insta
neously at time zero to the final shocked volume, and th
couples the system to a thermostat that guarantees tha
final Hugoniot state is achieved. Not only has the Hugon
curve been successfully reproduced using this method,
also the defect structures produced by the shock wave. It
been shown that the deformation structure of the solid pl
a key role in the determination of the correct melting po
along the shock Hugoniot. In contrast, the use of isotro
compression does not produce defective structures until a
the solid melts. On the other hand, uniaxial compression p
duces the same types of defects as the shock wave, al
way up to the melting transition. Thus, the uniaxial Hug
niostat is much better able to reproduce the energetics
structure of full NEMD shockwave simulations~provided, of
course, that the computational volume is large enough
contain a representative portion of the defects!. In any event,
the uniaxial Hugoniostat is nearly an order of magnitude l
expensive than a full shockwave simulation and has sho
to be quite useful in the study of the wide range of structu
changes seen as a function of compression. At low comp
sion ~up to 14%!, no defects are observed in the structu
For compressions between 15% and 24%, stacking faults
produced. For compressions greater than 24%, a struc
change from fcc to hcp is observed. Moreover, the density
defects in the solid is well reproduced as a function of sho
strength~compression!. Work is in progress to determine th
effect on melting of shock propagation direction in the cry
tal @9#.
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